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This paper presents a novel parametric design analysis of the magnetic sensor module used to find mover positions in linear motors. 

First, the sensor module is designed using the computationally inexpensive proper orthogonal decomposition (POD)-based model order 
reduction (MOR), coupled with a multiparameter moment matching method. Next, by modeling the surface response of the reduced 
model using a second-order polynomial, a reliability-based design optimization approach that considers the manufacturing uncertainties 
is employed to find the optimum sensor design. The results show that the proposed MOR technique is accurate and the reliability analysis 
performed during the design optimization can help reduce up to 40% of the excessive non-compliance costs for the manufacturers. 
 

Index Terms—Magnetic sensor, parametric model order reduction, optimization, probabilistic analysis. 

I. INTRODUCTION 
N THE design of magnetic sensors, computerized simulations 
such as the finite element method (FEM) followed by a design 

optimization procedure are widely used in recent years to 
achieve the optimal design parameters that satisfy the system 
constraints. However, for high-dimensional systems, the 
employment of FEM analysis can be computationally 
expensive. Furthermore, the parameter variations due to 
manufacturing uncertainties, which generally come from 
manufacturing processes and material properties, are often not 
taken into account during the optimization process. Thus, a 
large amount of defective (or non-compliant) products may be 
produced during the mass production stage, which could incur 
additional non-compliance costs for the manufacturers.  

Addressing these shortcomings, the paper studies the use of 
the parametric model order reduction (PMOR) method and a 
probabilistic design optimization method, known as the 
reliability-based design optimization (RBDO), to design the 
magnetic sensors. For a simultaneously accurate and efficient 
analysis, the paper proposes 1) a proper orthogonal 
decomposition (POD), coupled with multiparameter moment 
matching method to generate a computationally cost effective 
reduced system model followed by 2) a novel response surface 
moment-based RBDO method. The sensor design obtained 
from the proposed method is then compared against that of the 
non-probabilistic optimization method in the context of design 
non-compliance (or failure) probability. The results show that 
the proposed method is accurate and that up to approximately 
40% cost savings can be made if the system uncertainties are 
taken into consideration when optimizing the sensor design. 

II. PROPOSED METHOD 

A. Parametric study of based on model order reduction  
Prior to carrying out the optimization process, the 

information of the design parameters is required. The behavior 
of the parameter variation is modeled using the multiparameter 
moment matching method-based model order reduction (MOR). 

The overall computational operation can be divided into 1) 
initial parameter model based on FEM, 2) parameterization 
using the Taylor series, and 3) POD-based MOR. In FEM, the 
behavior of the electromagnetic system is studied using 
magnetic vector potential. Using the Galerkin method, the 
expression for potential can be written as 

                             F=UM )( 21 n,...,p,pp                              (1) 
where, Mmxm is the stiffness matrix, Umx1 is the vector of the 
nodal potentials with m degree of freedom (DoF), Fmx1 is the 
source vector and pi (i={1,2,…,n}) are the parameters. Using 
the Taylor series expansion, M in (1) can be expressed as [1], 
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where, M0 is the stiffness matrix with the initial parameters, 
ipΔ is the difference between initial and new parameter value, 

and Mi are coefficient matrices considering parameter variation. 
To reduce the computational time required to solve the 

system (2), POD method is applied [2] and the reduced model 
can be written as  
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where, Ψ is the discrete projection operator, calculated by the 
method of snapshot. Also, .T
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the reduced model (3) is r (r << m). 

B. Reliability-based design optimization: response surface 
moment-based reliability analysis 

The parametric model data from the reduced model (3) is 
then used as the input to the response surface methodology 
(RSM) for optimization. The RSM is modeled using  
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where {a00, a0i, aii, aij} is the set of coefficients of the model; N 
is the number of variables, and X is the vector of variables.  

In this paper, a new moment-based RBDO method is used. 
Here, the first four moments of G, E[Gi] for i = {1,2,3,4}, are 
analytically calculated using Mellin transform [3]. The four 
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moments are then used to calculate the mean, standard 
deviation, skewness and kurtosis of G. The obtained parameters 
are then used by Pearson distribution fitting technique to model 
the output distribution of G and its reliability is directly inferred 
from the fitted distribution during the optimization procedure. 

III. APPLICATION AND RESULTS 
A magnetic sensor module, shown in Fig 1. is optimized 

using the proposed methods in Section II. The sensor module is 
used to find the mover position in the linear motor. It consists 
of a PM and three iron cores (I, II and III) respectively. A hall 
IC is placed between I and II, at the center point to detect the 
flux density Bx, along the X axis, when the sensor moves over 
the stator. The magnetization direction of PM is along the Y axis. 
For sensor output that is more robust to noise, the total 
harmonic distortion (THD) at center point is desired to be lesser 
than 4.5%, and it is the objective function to be minimized. 
Simultaneously, the flux density at the center point must be high 
enough to be detected by the Hall IC, and thus the center point 
peak flux density (PFD) higher than 0.16 T is desired. These are 
considered as the two design constraint in the optimization. 

To carry out the optimization procedure, model parameters w 
and hi, as shown in Fig. 1, were considered. The initial design 
specifications are taken as (g1, g2, w, hi, t) = (1, 2, 7, 3, 1). Using 
the initial design condition, FEM analysis of the sensor module 
was done. Then, w and hi were varied to 6 mm and 2 mm 
respectively and FEM was done. Under these two cases, Bx 
variation was computed for one pole pitch movement of the 
mover. Using these data, the Taylor series expansion (2) was 
generated for parameterization. Then, a reduced model was 
achieved using (3). The process of parameterization and MOR 
were carried out in MATLAB platform. Once the reduced 
model is generated, the computation of  Bx with respect to a new 
value of w and hi can be very efficiently done by the reduced 
model without repeated the full high-dimensional FEM analysis. 

The reduced model data was then used to obtain the RSM 
model (4) for PFD and THD through least squares method. The 
comparison of the surface plots obtained from the traditional 
FEM model and the polynomial RSM model is shown in Fig. 2. 
It shows that the proposed PMOR-based polynomial RSM 
model agrees with the traditional FEM model. Next, the 
following two design optimization scenarios were considered: 
1) the non-probabilistic optimization which does not account 
for the manufacturing tolerance of w and hi, and its effects on 
PFD and THD; and 2) RBDO (or probabilistic optimization) 
proposed in Section II-B, whereby the tolerance effects of w and 
hi are considered during the optimization, with the failure 
probability of complying with the above mentioned constraints 
set to < 1%. Then, from the optimal designs obtained in both 
scenarios, the actual failure probabilities in adhering to the 
constraints were calculated using Monte Carlo simulation with 
106 samples. The results are presented in Table I. 

The optimal design attained from the non-probabilistic 
optimization adheres to the set constraints. Furthermore, the 
THD is the lowest among all the designs, promising a high-
quality sensor design that is highly robust to noise. However, as 
the effects of manufacturing tolerance were not taken into 

account during the optimization, the chances of failure in 
meeting the PFD constraint could go up to approximately 40%. 
This, in turn, brings additional non-compliance costs when 
remanufacturing or modifying the defective sensors. On the 
other hand, this can be avoided if RBDO is used in finding the 
optimal sensor design. The marginally higher THD (in Table I) 
would be the trade-off in avoiding the excessive expenses 
incurred due to non-compliance, making the probabilistic 
optimization tool highly valuable for the manufacturers. 

In the future extended manuscript, all sensor parameters, 
material properties and their tolerance effects on the sensor 
design will be studied extensively with a more accurate RSM. 

 

 
Fig. 1. Magnetic sensor module. 
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      (a)              (b) 
Fig. 2. PFD and THD surface responses of the (a) FEM model and (b) PMOR-
based polynomial RSM model. 

TABLE I 
OPTIMAL DESIGN OF THE MAGNETIC SENSOR AND CONSTRAINT COMPLIANCE 

FAILURE PROBABILITIES 

Optimization 
methods 

Tolerance 
(mm) 

Optimal design 
Failure 

probability 
(%) 

w 
(mm) 

hi 
(mm) 

PFD 
(T) 

THD 
(%) PFD THD 

Traditional 
(Scenario 1) 

 0.1 6.45 3.00 0.16 3.25 41.71 0.00 
   0.05 33.88 0.00 

RBDO 
(Scenario 2) 

 0.1 6.80 3.15 0.17 4.42 0.01 0.04 
   0.05 6.85 3.05 0.16 4.40 0.00 0.01 
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